A shellcode is a piece of compiled code that is typically given as input to a program that, when executed, is going to launch a shell (see Build Your Own Shellcode).
To test a shellcode we are going to used the following code:
// filename: test_shellcode.c
char *code = "<shellcodegoeshere>";
int main()
{
void (*shell)();
shell=(void (*)())code;
(*shell)();
}
In line 2, we are going to copy the shellcode that we want to test.
In line 5, we are declaring the variable shell as a pointer to a function that returns void and that takes no arguments.
In line 6, we are casting the string pointer code to the same type of the variable shell (i.e.: a function that returns void and that takes no arguments.)
In line 7, we are calling the function pointed by the shell variable (passing no parameters).
Once we filled the code variable with the shellcode (in line 1), we can compile the program and run it as:
$ gcc -o test_shellcode test_shellcode.c
$ ./test_shellcode
In this way we can understand if the shellcode will work on the current system.
To give a shellcode in input to a program in order to execute it we have to be careful about few more things as explained in Build Your Own Shellcode.
The content pointed by the variable code is going to be allocated in an executable portion of the memory layout.
The command $ readelf -a ./test_shellcode
gives a lot of information. Let’s try to brake it down for easy to digest.
If we examine the symbol tables $ readelf -s ./test_shellcode
we can see something like this:
Symbol table '.symtab' contains 62 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000238 0 SECTION LOCAL DEFAULT 1
2: 0000000000000254 0 SECTION LOCAL DEFAULT 2
3: 0000000000000274 0 SECTION LOCAL DEFAULT 3
.........
59: 0000000000000000 0 FUNC WEAK DEFAULT UND __cxa_finalize@@GLIBC_2.2
60: 00000000000004d0 0 FUNC GLOBAL DEFAULT 10 _init
61: 0000000000201010 8 OBJECT GLOBAL DEFAULT 22 code
In line 10, the symbol code
is shown with a Value
of 0000000000201010
.
The Value
column represent the address of the symbol.
The command $ readelf -S ./test_shellcode
shows the header sections of the ELF file:
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[ 0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0
[ 1] .interp PROGBITS 0000000000000238 00000238
000000000000001c 0000000000000000 A 0 0 1
[ 2] .note.ABI-tag NOTE 0000000000000254 00000254
0000000000000020 0000000000000000 A 0 0 4
......
[21] .got PROGBITS 0000000000200fc0 00000fc0
0000000000000040 0000000000000008 WA 0 0 8
[22] .data PROGBITS 0000000000201000 00001000
0000000000000018 0000000000000000 WA 0 0 8
[23] .bss NOBITS 0000000000201018 00001018
0000000000000008 0000000000000000 WA 0 0 1
Here, we can see that the .data
section has an address of 0000000000201000
and a size of 0000000000000018
. The symbol code
is defined as the address of 0000000000201010
i.e., inside the .data
section.
We could have gather the same information by running $ objdump -t ./test
:
SYMBOL TABLE:
0000000000000238 l d .interp 0000000000000000 .interp
0000000000000254 l d .note.ABI-tag 0000000000000000 .note.ABI-tag
0000000000000274 l d .note.gnu.build-id 0000000000000000 .note.gnu.build-id
0000000000000298 l d .gnu.hash 0000000000000000 .gnu.hash
00000000000002b8 l d .dynsym 0000000000000000 .dynsym
......
0000000000000000 w *UND* 0000000000000000 _ITM_registerTMCloneTable
0000000000000000 w F *UND* 0000000000000000 __cxa_finalize@@GLIBC_2.2.5
00000000000004d0 g F .init 0000000000000000 _init
0000000000201010 g O .data 0000000000000008 code
In line 11, we can see that the symbol code
is declared in the section .data
.
To know the permission that a section has, we can have to look at the Program Headers
and at the Section to Segment
mapping by running $ readelf -a ./test_shellcode
:
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040
0x00000000000001f8 0x00000000000001f8 R 0x8
INTERP 0x0000000000000238 0x0000000000000238 0x0000000000000238
0x000000000000001c 0x000000000000001c R 0x1
[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000818 0x0000000000000818 R E 0x200000
LOAD 0x0000000000000df0 0x0000000000200df0 0x0000000000200df0
0x0000000000000228 0x0000000000000230 RW 0x200000
DYNAMIC 0x0000000000000e00 0x0000000000200e00 0x0000000000200e00
0x00000000000001c0 0x00000000000001c0 RW 0x8
NOTE 0x0000000000000254 0x0000000000000254 0x0000000000000254
0x0000000000000044 0x0000000000000044 R 0x4
GNU_EH_FRAME 0x00000000000006d4 0x00000000000006d4 0x00000000000006d4
0x000000000000003c 0x000000000000003c R 0x4
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 0x10
GNU_RELRO 0x0000000000000df0 0x0000000000200df0 0x0000000000200df0
0x0000000000000210 0x0000000000000210 R 0x1
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version
.gnu.version_r .rela.dyn .init .plt .plt.got .text .fini .rodata .eh_frame_hdr
.eh_frame
03 .init_array .fini_array .dynamic .got .data .bss
04 .dynamic
05 .note.ABI-tag .note.gnu.build-id
06 .eh_frame_hdr
07
08 .init_array .fini_array .dynamic .got
Here we can see that the .data
section is mapped into the segment 03 (i.e., the 4th segment).
Under the “Program Header” we can count the segments from the top; the first is PHDR
segment, the second is INTERP
and the fourth is LOAD
with permission to read and to write (but not execute!).
If we don’t have the execute permission, how come that we are able to run the code??
Let’s run the code in GDB to clarify this point (I am using GEF):
Reading symbols from ./test_shellcode...(no debugging symbols found)...done.
gef➤ b main
Breakpoint 1 at 0x61e
gef➤ r
Starting program: /home/pippo/ctf/lectures/build_shellcode/test
Breakpoint 1, 0x000055555555461e in main ()
gef➤ info address code
Symbol "code" is at 0x555555755010 in a file compiled without debugging.
gef➤ x/1g 0x555555755010
0x555555755010 <code>: 0x5555555546c4
gef➤ x/1g 0x5555555546c4
0x5555555546c4: 0x5bf0000003cb8
In line 7, we are printing the address of the global variable code
that is located 0x555555755010
(as shown in line 8). This variable is a pointer to the location of memory 0x5555555546c4
(line 10).
To understand what are the permission of those different memory locations we can run
gef➤ vmmap
:
gef➤ vmmap
Start End Offset Perm Path
0x0000555555554000 0x0000555555555000 0x0000000000000000 r-x /home/pippo/ctf/lectures/build_shellcode/test_shellcode
0x0000555555754000 0x0000555555755000 0x0000000000000000 r-- /home/pippo/ctf/lectures/build_shellcode/test_shellcode
0x0000555555755000 0x0000555555756000 0x0000000000001000 rw- /home/pippo/ctf/lectures/build_shellcode/test_shellcode
0x00007ffff79e4000 0x00007ffff7bcb000 0x0000000000000000 r-x /lib/x86_64-linux-gnu/libc-2.27.so
0x00007ffff7bcb000 0x00007ffff7dcb000 0x00000000001e7000 --- /lib/x86_64-linux-gnu/libc-2.27.so
0x00007ffff7dcb000 0x00007ffff7dcf000 0x00000000001e7000 r-- /lib/x86_64-linux-gnu/libc-2.27.so
0x00007ffff7dcf000 0x00007ffff7dd1000 0x00000000001eb000 rw- /lib/x86_64-linux-gnu/libc-2.27.so
0x00007ffff7dd1000 0x00007ffff7dd5000 0x0000000000000000 rw-
0x00007ffff7dd5000 0x00007ffff7dfc000 0x0000000000000000 r-x /lib/x86_64-linux-gnu/ld-2.27.so
0x00007ffff7fcd000 0x00007ffff7fcf000 0x0000000000000000 rw-
0x00007ffff7ff7000 0x00007ffff7ffa000 0x0000000000000000 r-- [vvar]
0x00007ffff7ffa000 0x00007ffff7ffc000 0x0000000000000000 r-x [vdso]
0x00007ffff7ffc000 0x00007ffff7ffd000 0x0000000000027000 r-- /lib/x86_64-linux-gnu/ld-2.27.so
0x00007ffff7ffd000 0x00007ffff7ffe000 0x0000000000028000 rw- /lib/x86_64-linux-gnu/ld-2.27.so
0x00007ffff7ffe000 0x00007ffff7fff000 0x0000000000000000 rw-
0x00007ffffffde000 0x00007ffffffff000 0x0000000000000000 rw- [stack]
0xffffffffff600000 0xffffffffff601000 0x0000000000000000 r-x [vsyscall]
(gef➤ vmmap
is exactly the same of running cat /proc/{process_id}/maps
, where process_id is the process of the debugged program. To obtain the process id of the currently running debugged program run info inferior
.)
In lines 3,4 and 5 we can see that there are 3 memory regions that map the test_shellcode executable with different permissions.
We can see that the variable code
(0x555555755010
) is located in a memory region that has read and write permissions, in line 5. This is the same information that we obtained previously by reading the ELF file (with the readelf
command).
We can also see that the address pointed by the variable code
(0x5555555546c4
) is located in a memory region that has read and execute permission, in line 3.
Sometimes over the Internet you see code like this:
int main(){
char code[]= "\xb8\x3c\x00\x00\x00\xbf\x05\x00\x00\x00\x0f\x05";
void (*shell)();
shell=(void (*)())code;
(*shell)(); //shell();
}
Here, the code
variable is declared inside the main function and it is NOT a pointer.
This code WILL NOT work if compiled with:
$ gcc -o test_shellcode ./test_shellcode.c
The code will compile correctly but it will produce Segmentation fault
when executed.
The reason is simple, the code
variable is located in the stack and since it is a non-executable memory region, if an instruction tries to execute from here the system will produce a segmentation fault.
This code WILL work if compiled by passing the flag to make the stack executable:
$ gcc -o test_shellcode -z execstack ./test_shellcode.c
(Alternatively we can also use the execstack
tool to change the executable stack flag of an ELF file.)